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Abstract—Calendars are essential for professionals working
in industry, government, education and many other fields, which
play a key role in the planning and scheduling of people’s day-to-
day events. The majority of existing calendars only provide insight
and reminders into what is happening during a certain period of
time, but do not offer any actual scheduling functionality that can
assist users in creating events to be optimal to their preferences.
The burden is on the users to work out when their events should
happen, and thus it would be very beneficial to develop a tool
to organise personal time to be most efficient based on given
tasks, preferences, and constraints, particularly for those people
who have generally very busy calendars. This paper proposes
a smart calendar system capable of optimising the timing of
events to address the limitations of the existing calendar systems.
It operates in a tiered format using three search algorithms,
namely branch and bound, Hungarian and genetic algorithms,
to solve different sized problems with different complexity and
features, in an effort to generate a balanced solution between time
consumption and optimisation satisfaction. Promising results have
shown in the experimentation in personal event planning and
scheduling.

I. INTRODUCTION

Existing calendar systems assume that all the events are
fixed and hence they only provide an overview of events and
tasks that are happening in a given period of time. They allow
the owner to add, delete and edit items, and many are also
able to communicate with other people’s calendars too, by
means of sending activity invitations. However, no mainstream,
personal calendar, such as those provided by Google, Apple,
Microsoft amongst others, offers functionality to upgrade a
standard calendar from a simple collection of reminders to a
comprehensive personal planning tool to effectively plan both
fixed and flexible events for users.

Although some events, such as lectures, conferences and
birthdays, have fixed dates and times that can easily fit into the
structure that conventional calendars offer, many events, such
as social meetings and studying, are more flexible in when they
can be done. The decision-making process used to calculate
when is best to do each task can be automated using advances
in artificial intelligence, and actually a few such systems have
been developed.

PTIME is a business-focused planner that has a strong
focus on multi-user calendar compatibility, particularly for
room bookings [1]. PLIANT is another event planner that is
built on top of PTIME, which also tries to learn the prefer-
ences of the user in order to make user-tailored suggestions,

besides scheduling events based on preference [2]. PLIANT is
developed by applying constraint satisfaction problem (CSP)
techniques [2] and is particularly useful when decisions are
not easy to make: under-constrained scheduling, where there
are many feasible options to chose; and over-constrained
scheduling, where there are too few options available.

SELFPLANNER [3] is another smart calendar solution. In
this system, everything in a calendar is treated as the same
‘type’ of object instead of trying to separate things into ‘events’
and ‘tasks’ etc. This is because both events and tasks require
the user’s time, and treating them separately may lead to
unnecessary user effort in overall time management. Instead
of providing the user with the best calculated plan, it provides
several plans and allows the user to select from them based on
personal preference. This is implemented through the use of
hard and soft constraints to make the calendar more flexible for
the user. The software is also capable of taking less traditional
soft variables into account such as how much of the user’s
attention will be required to carry out the event. Plans for
SELFPLANNER are created and optimised through the use of
squeaky wheel optimisation (SWO) [4].

As only one search algorithm is used the above system
may perform well for one type of problem, but they may
struggle for others as algorithm’s performance varies problem
to problem. This paper presents a smart calendar system that
is able to optimise personal events using multiple search
algorithms, including branch and bound, Hungarian and ge-
netic algorithms. Branch and bound techniques perform an
intelligent exploration of the search space but can potentially
be exhaustive; Hungarian can have great performance in time,
but only works with events of equal length and spacing; and
genetic algorithms can handle very complex problems, but do
not guarantee perfect solutions. Given an event optimising
problem, a specific algorithm is then chosen depending on
the search space size and how quick the solution could be
generated. Please note that the focus of the proposed system
is not on changing how a calendar is used, rather it instead
tries to add functionality to it, maintaining its current purpose.

The remainder of this paper is structured as follows. The
background of the research topic is introduced in section II.
Section III presents the proposed work in personal event
planning by globally optimising the preferences and section IV
applies the proposed approach to real world problems for
demonstration and evaluation. The paper concludes in sec-
tion V with future research directions recommended.



II. BACKGROUND

Fundamentally, planning and scheduling is a combinational
optimisation problem with symbolic representation of events
and various types of constraints on events. Three search
algorithms are employed in the proposed system with each
targeting a different type of problem, which are introduced as
follows.

A. Branch and Bound

Branch and bound is an algorithm design commonly used
to solve combinatorial optimisation problems such as the Job
Shop Scheduling Problem (JSSP), which is “based on the idea
of intelligently enumerating all feasible solutions” [5]. It is a
type of constraint satisfaction problem (CSP) algorithm which
uses heuristics to efficiently calculate a feasible solution; the
value of this is stored as the upper bound. Branches from
this solution have their cost calculated; if their value is better
than the upper bound, the branching continues until a full,
better solution is found. Once the upper bound is exceeded
however, that branch is “pruned” as no solution with this
starting combination could possibly be better. A lower bound
is also used which is calculated using heuristics to indicate
the best likely solution that branch can provide. If the lower
bound exceeds the upper bound the branch is pruned.

The branch and bound algorithm is a well-known, versatile
solution for many problems, including flow shop schedul-
ing [6], project scheduling [7] and the generalised assignment
problem [8]. Often, combinatorial optimisations have the aim
of reducing cost or idle time across multiple machines, each
carrying out several jobs; whereas this paper presents the use
for maximising the preference of events assigned to time slots.
However, this becomes much more complex when events vary
in length and have multiple preferences.

Somol et al. [9] briefly summarises the problems with
branch and bound in saying that there is no possible way
to know if branch and bound will prune enough branches
to be significantly faster than an exhaustive search. They
give two potential reasons for branch and bound having poor
performance in some cases; near the root of the search tree,
“criterion value computation is usually slower” and “sub-tree
cut-offs are less frequent” both of which suggest that there
may be problems dealing with deep trees (a large number of
events).

In summary, branch and bound search is a significant
improvement on a standard depth first search even when
backtracking is used, but in some cases is no better than an
exhaustive search which, in the worst case scenario, will run
in O(n!) time. For this reason, branch and bound is a good
search algorithm for a small n but not as useful for larger
problems.

B. Hungarian Algorithm

Kuhn [10] proposed an algorithm (see Fig. 1) to solve the
general assignment problem, where m jobs must be assigned
to m workers in the most cost efficient way. Unlike most of
the other algorithms presented so far, the Hungarian algorithm
does not use a tree structure for the search space; it instead
uses a matrix of cost values which are reduced until a best
combination can be found.

The functions used in pseudocode shown below operate as
follows:

• minVal - Returns the minimum value in the matrix

• coverZeros - Returns the minimum number of vertical
or horizontal lines required to cover all zeros

• lowestUncovered - Returns the lowest not covered
value in the matrix

• numCovers - Returns the number of times a value is
covered

• assignZeros - Returns a valid assignment of jobs to
workers

SOLVE(M)
Input:

M, a preference matrix of m ∗m
(01) minval← MINVAL(M)
(02) foreach v ∈M
(03) v ← (v −minval)
(04) while COVERZEROS(T) < m
(05) low ← LOWESTUNCOVERED (T)
(06) foreach v ∈ T
(07) if NUMCOVERS(v) = 2
(08) v ← (v + low)
(09) if NUMCOVERS(v) = 0
(10) v ← (v − low)
(11) plan←ASSIGNZEROS(M)
(12) return plan

Figure 1. Pseudocode showing the Hungarian algorithm

The problem can be modified to allow n workers by
introducing dummy variables to even out m and n which are
later ignored [11]. Edmonds & Karp [12] went further with
the algorithm by showing that it could be used to solve m∗m
assignment in O(n3) time instead of O(n4) which was the
time complexity that the Hungarian algorithm was originally
thought to be.

Since the algorithm’s original conception, variations of
this algorithm have been used to solve specific subsets of
the assignment problem such as Mills-Tettey et al. [13] who
devised a way to apply the Hungarian algorithm to a matrix of
changing costs. This variation was designed with transportation
optimisation in mind and would allow calculations to account
for unforeseen road closures and other randomly occurring
changes to the scenario.

C. Genetic Algorithms

Modelled upon Darwin’s theory of evolution by Hol-
land [14], evolutionary algorithms, particularly genetic algo-
rithms (GAs), have become a very powerful tool for optimi-
sation and search problems [15]. This algorithm has 3 main
components:

1) Selection
2) Crossover/Mating
3) Mutation



Because a GA must be tested and benchmarked based on
its overall performance, a short-list was made of potential
functions and values for these components and their pressures.
All combinations and variations of these were then tested
to find the best performing combination. Each of the three
important steps in a GA is introduced as follows.

Selection is the process of determining which solutions will
be ‘mated’ together (crossed over). There are many ways to
do this, the simplest of which is where the k best solutions in
the pool are selected; however much more advanced methods
are also available. A commonly used method is tournament
selection. Goldberg & Deb [17] show that the time complexity
of this selection method is O(n). It works by selecting n
individuals from the population at random, and then selecting
one of these individuals with a probability p, which changes
based on the fitness score of each individual. The highest
fitness score is picked with a probability of p(1−p) the second
is picked with probability p((1− p)2) and so on.

The crossover function determines how two chromosomes
will be mated together. Single-point crossover, for example,
being used on individuals of length n, will choose a single
bit position from values 1 to n. The offspring is then created
using the bits of the first parent individual that are before k
and the bits from the second parent individual that are after k,
thus making a combination of the two ‘parent’ individuals.

As in selection, there are more advanced methods of
carrying out crossover, some of which are designed to specif-
ically handle individuals whose order is important. Poon &
Carter [18] did a multitude of tests on several of these types
of crossover algorithms and found that union crossover (UX) is
“comparable in applicability and performance to the classical
crossover used in binary-string GAs.” However it can be very
slow to run taking 26 times longer than the faster methods
of cycle crossover (CX), partially mapped/matched crossover
(PMX) and ordered crossover (OX). In this research, though
CX finished quickly, it is one of the worst performing methods
used as, unlike PMX, it is not good at preserving substrings
of neighbouring elements.

Mutations create small changes in offspring with the pur-
pose of creating diversity within the population of solutions.
They allow individuals to avoid getting locked in local op-
tima [19] which, as shown in SAs, can overcome a serious
problem in these types of search methods. An example of
mutation would be, given mutation probability of 0.2 and an
individual component mutation probability of 0.01, as shown
in Fig. 2.

MUTATE(Q)
Input:

Q, a suggested order of events
(1) if rand(0,1) ≤ 0.2
(2) foreach f ∈ Q
(3) if rand(0,1) ≤ 0.01
(4) plan← BITFLIP(f)
(5) return plan

Figure 2. Pseudocode showing the function of prob-
abilities in mutation

The probability of mutations is one which needs to be
fine tuned for a specific problem; however to summarise
several research papers into a short rule of thumb, mutation
rates should be between 0.01 (for small populations 30) and
0.001 (for large populations 100) [20], though it is also
recommended to take the length of the encoding into account.
It also explains in this work that too high a probability can
cause the GA to turn into what will essentially be a random
search.

Population size plays an important role in the performance
of GAs. Too small of a population will increase the chance
of peaking at a local optima, due to a lack of diversity. Too
large of a population will require a lot more processing time
because of the increased number of evaluations that will need
to be calculated. However some research [21][22] shows that
less generations are needed for larger populations sizes. In
most, if not all, cases a larger population size will result in a
better final solution [23].

Pressures are used to represent the probability of crossover
and mutation taking place. For crossover, pressure is usually
set above 0.5, and if set lower than this it would nullify the
purpose of GAs, as top-class chromosomes would be unlikely
to be mated. For mutation pressure, the value is usually set
below 0.4 but over 0.1. This is because a value higher than this
would likely alter too many chromosomes thus changing too
many individuals; a value lower than this would likely cause
the algorithm to arrive at a local optima, as discussed earlier.
Essentially, there is a need for an “optimal balance between
exploitation and exploration” [21].

Deb et al. [24] proposes a GA which employs elitism, a
technique which allows the best solution in the pool to be
copied to the next iteration pool unchanged. The fact that it is
copied and not moved is important as the elite individual can
still be used in the crossover process so long as there is a copy
of the original in the next iteration. This is a component that
is considered to be a hugely important factor [25] to improve
the performance of GAs.

III. THE SMART CALENDAR SYSTEM

There are a good variety of search algorithms available in
the literature for computational optimisation problems, each
with different strengths and limitations. However the proposed
smart calendar system employs three different algorithms,
including branch and bound, the Hungarian algorithm, and
genetic algorithm. Small search spaces are dealt with by branch
and bound algorithm, large search spaces are handled by the
genetic algorithm, and Hungarian algorithm is applied to deal
with problems when the available time exactly matches the
time required for events to schedule.

In particular, branch and bound is employed when the
number of slots in the search space is very low (no more than
5 events or 6 time slots regardless of size). The Hungarian
algorithm is used for two specific situations: 1) when all the
events in the search space, and the empty spaces between
them, are of the same length; and 2) when all the events
have to be done within a given amount of time as soon as
possible without break, and thus the event allocation problem
changes to a sequence optimisation problem. This is because
this algorithm is only able to deal with problems with the same



number of events and time slots. Finally, GAs are used to solve
all other problems as their search spaces can be very large. In
theory, a GA could be used to solve all of the problems in
reasonable time, but it would not be possible to guarantee that
local minima would be avoided in reasonable time. However,
both branch and bound and Hungarian algorithms are able to
always find the global optimum, which is why they are the
first choice when they can solve the problem in a reasonable
amount to time.

A. Problem Representation

The scheduling problem can be formally represented as a
CSP problem. Basically, a CSP problem is defined as a finite
set of variables, each of which is associated with a domain of
finite elements, and a set of constraints that restricts the values
the variables can simultaneously take [26], [27]. The task of a
CSP problem is to assign a value to each variable such that all
constraints are satisfied (and sometime the objective function is
maximised or minimised). Formally, A constraint satisfaction
problem is a triple (X,D,C), where

• X is a finite set of variables x1, x2, . . . , xn;

• D is a function which maps every variable in X to a
set of objectives of arbitrary type. That is, Di is the
domain of variable xi. Each domain Di is a set of
possible values which variable xi may take.

• C is a finite set of constraints on an arbitrary subset of
variables in X . In other words, C is a set of compound
labels.

The time is discretised into a number of time slots in this
work such that the event optimisation can be represented as a
CSP problem. The number of discretised slots is dependent on
the specific problems. Generally speaking, finer discretisation
usually requires higher computational effort and thus slower
processing, but may lead to fine-tuned optimisation results
in the same time; rough discretisation normally leads to fast
processing, but the results may not be quite optimal. In this
work, slots are created to be the size of the greatest common
divisor of all of the event lengths. For example, slot sizes
for processing 3 events which are 2, 4 and 6 hours long
respectively, the slots size would be 2 hours.

In order to reflect the needs of optimisation, each possible
assignment of events to time slots is attached with a preference
value. The preference values are ranged from 0 to 9, where
0 means the event must start at this time and 9 indicates
the lowest preference. The aim of the proposed system is to
minimise the sum of the preference of all events. Suppose that
there are m events need to be scheduled in to n time slots.
The smart calendar system can be mathematically represented
as a CSP problem as follows:

• X = {x1, x2, ..., xn}, where n is the number of
discretised time slots.

• E = {e1, e2, ..., em}, where m is the number of
events need to be planned/ scheduled.

• Dxi = {ei1, ei2, ..., eil, NULL}, where
i ∈ {1, 2, ..., n}, and eij ∈ {E}, j = {1, 2, ...,m}.
Null represents no event is started at the concerned
time slot. The preference value for assigning event
eij to time slot xi is Pij .

• C = {c1, c2, c3}.
• c1: if an event ep is assigned to xi, i ∈ {1, 2, ..., n},

and if the time required for the event is longer than
the discretised time slot, the next p time slots will be
assigned as Null, where p = d|eP /te − 1 and |eP | is
the length of event eP .

• c2: each event only can appear once in the calendar.

• c3: minimising the following objective function:
m∑
j=1

Pij , where i ∈ {1, 2, ..., n, n+ 1}. (1)

P(n+1)j is a number greater than 9 representing the
penalty when event j is not scheduled. The larger the
value of this, the less important the concerned event
is.

B. Preprocessing

In order to reduce the search space, two steps of pre-
processing are used in this work. When a set of events are
submitted by the user for processing, a block of valid time
slots are created starting from the earliest preference time to
the latest preference time. The database is then checked to see
if any existing events are already within this time range. If
events are found and they are locked, that is they cannot be
modified, then the time slots it occupies are removed from the
list of valid slots. If the event is not locked, that is it can be
modified, then that event is removed from the calendar and
added to the set of events that the user submitted so that it
can be re-processed for a global optimal solution. These steps
are repeated until no unlocked events exist in the list of valid
time slots. Once the above step is completed, partial constraint
propagation is carried out to ensure that each event has at least
one valid range of time slots that it can be assigned to. This
can assist in identifying when a set of events have no valid
configuration before using an algorithm.

C. Event Planning by Branch and Bound

As with all problems to be solved using branch and bound,
this combinatorial optimisation problem is represented as a
rooted tree, as shown in Fig. 3. In this rooted tree, each node
represents an event whose position on a branch determines
when it is planned for. In order to relate the position on a
branch to a specific time, a time period is specified which a
branch can be mapped onto so that the position signifies a
starting time.

Though the way in which the tree is traversed is the core of
this algorithm, the way in which the tree is structured plays an
important role. Preferences for events usually increase and/or
decrease gradually to/from a main, maximum preference;
because of this, trees are generated in an order designed to
quickly eliminate branches. This is done by creating branches



Figure 3. Tree representation of event planning

with as small changes as possible, that is by only changing
the position of each event by no more than one position
where possible. This makes it easier for the algorithm to
prune branches because it is unlikely that preferences change
drastically due to small positional changes.

Suppose there are m events to be scheduled. The aim of
this algorithm is to minimise the preference value based on
the preference function:

f =

m∑
i=1

ei. (2)

In most branch and bound algorithms, the starting value will be
0 and the values are summed and added to this to find the total
value of the solution. However, the aim of this algorithm is to
minimise the preference value, and it is therefore necessary to
reverse the way in which the current preference value changes.
For this implementation the starting value is calculated as 1000
per event, and the total preference is represented as Equation 3.

finitial =

m∑
i=1

ei ∗ 1000 (3)

As an event is assigned, 1000 is taken from the current
value and the preference value is added (current = current−
1000 + preference).

As introduced in Section II, two bounds are usually used
in Branch and Bound algorithm. The heuristic function used
to determine the lower bound of a partially assigned branch is
calculated based on what the best possible outcome could be
for each of the remaining nodes. This is computed by taking
the sum of preference values already assigned and adding the
lowest preference value for each remaining node. For example,
given the preference matrix as shown in Table I. If event a is
assigned to 12:00 and event b is assigned to 13:00 then the
heuristic function would take 5 for event c at 14:00 and 1 for
event d at 16:00. Therefore, the lower bound of a leaf from
the nodes explored so far is 2+3+5+1 = 11.

12:00 13:00 14:00 15:00 16:00
a 2 1 4 5 9
b 3 3 1 2 3
c 1 4 5 6 7
d 4 1 3 2 1

Table I. PREFERENCE MATRIX FOR 4 EVENTS AND 5 TIME SLOTS

Formally, suppose that m events need to be scheduled to
n time slots, and i events e1, e2, ..., ei have been tentatively
assigned to time slots from x1 to xj . The best possible
overall preference can be calculated by adding the sum of
the preferences so far up to ei to the best possible remaining
preference of ej , j = {i + 1, i + 2, ...,m}, as shown in
Equation 4. The value calculated by f constitutes the lower
bound of the branch at node xi, which can be used to determine
if a branch is destined to fail to reach an optimal solution,
without having to explore the whole branch.

f ′ = f(e1, e2, ..., ei) + g(ei+1, ei+2, ..., em), (4)

where g(ei+1, ei+2, ..., em) is the best possible preference
value for the set of unassigned events {ei+1, ei+2, ..., em}:

g(ei+1, ei+2, ..., em) =

m∑
p=i+1

n
min

q=j+1
cpq (5)

When the lower bound is found to be greater than or equal
to the current, the branch is temporarily pruned at that point.

D. Event Planning by Hungarian Algorithm

As the Hungarian algorithm only works in a one-to-one
assignment, meaning assigning a single event to multiple slots
would not be possible, it can only be used in very specific
circumstances. However, when these requirements are met, it
provides a significantly faster way to solve the combinatorial
optimisation problem this paper aims to solve. One scenario
where these circumstances are able to be taken advantage of is
for the attending of a conference and other similar proceedings
where events are evenly spaced. At such events there are often
multiple sessions on at any one time and these sessions occur
in regular intervals meaning an attendee is required to select
which sessions they wish to attend based on preference.

For this problem the Hungarian algorithm is implemented
using a m∗n matrix, where n columns represent n time slots,
and m rows represent m events. As in many cases there will be
more time slots available than events, extra rows can be added
such that n = m. These extra events will be dummy events to
allow the algorithm to function correctly. In cases where this
is required, all rows which are dummy events are then ignored
once the algorithm is complete. For example, Table II shows
3 events x, y and z each being one hour long, which are to be
assigned to times 12:00, 13:00, 14:00 and 15:00. As n 6= m
a dummy event is added to the preference matrix which are
given values of 0 for all time slots. The grid is then filled with
the preferences for each event starting at a given time. The
algorithm is then run as usual for a global optimal solution.



12:00 13:00 14:00 15:00
x 0 1 4 5
y 3 3 1 2
z 1 4 5 3
- 0 0 0 0

Table II. PADDED PREFERENCE MATRIX FOR THE HUNGARIAN
ALGORITHM

E. Event planning by Genetic Algorithm

When a GA is used for combinatorial optimisation, the
most common way for a chromosome to be represented is by
using a vector of indices which represent events, where each
index is the position of the event in the original list. For ex-
ample, 5 events could be represented as a chromosome shown
in Fig. 4. As discussed earlier for the problem presentation,
the GA chromosome representation will also include ‘NULL’
genes to represent empty time slots. For the GA, these values
are represented using -1 for the index, as illustrated in Fig. 5.

0 1 2 3 4

Figure 4. GA chromosome index representation

0 1 2 3 4 -1 -1 -1

Figure 5. Initial GA chromosome index representation with ‘NULL’ values

The initial population was generated by selecting 300
random permutations of the initial chromosome. For instance,
the chromosome shown in Fig. 6 is a random permutation of
the initial chromosome shown in Fig. 5. The random initial
population guarantees the population has an unbiased starting
point to search from.

3 -1 2 0 -1 1 4 -1

Figure 6. Random permutation of Fig. 5

In order to ensure the GA is fine-tuned to the problem,
different configurations of methods and values were tested to
determine which performs the best when solving an average
scheduling problem. Note that tournament selection has a
good time complexity and its pressure is simple to modify
by altering the size of the tournament, and the larger this is,
the less chance a weak chromosome has of going through to
crossover. This approach is utilised in this work as the selection
algorithm for this GA. In line with the experiment carried out
by Miller and Goldberg [28] tournaments of size 2, 3, 4 and 5
were used in a GA configuration test (N.B a tournament size
of 1 would be the same as random selection).

Based on the research carried out into crossover methods,
PMX and OX were tested in the configuration of the GA as
they both perform well and are able to work with ordered
chromosomes. This is important as many methods work with
whole values rather than ordered individuals. Crossover pres-
sures of values 0.5 to 0.9 (incrementing in values of 0.1) were
used in the test.

Index shuffle was used for the final GA configuration as it
is specifically designed to work well using vectors of indices. It
was tested with pressures of 0.1 to 0.4 (incrementing in values

of 0.1). This method also requires that an individual probability
be set, which determines how likely it is for a specific index to
be shuffled. Individual probabilities are typically significantly
lower than normal mutation pressure (under 0.1) as a high
value would make it very likely that most of the chromosome
would be altered, which would turn the GA into a random
search. For this reason, three values will be chosen to be tested
for the configuration: 0.02, 0.04, 0.06 and 0.08.

The configuration test checked all combinations of the
components mentioned above and revealed that the following
functions and values performed the fastest and with the best
schedule.

• Tournament Size: 2

• Crossover algorithm: PMX

• Crossover Pressure: 0.5

• Mutation Pressure: 0.1

• Mutation individual pressure:0.04

As the search space the GA has to cover in-
creases/decreases due to the number of events being processed,
it is necessary for the number of iterations to increase also. In
order to do this effectively, the number of iterations scales in
line with the number of events in the search. The number of
iterations used by the GA is calculated using the equation in
Equation 6, with a maximum number of 200 in order to ensure
the search remains within reasonable time.

iteration = (n+ 1) ∗ 10. (6)

As GAs have the potential to reach a valid solution prior
to reaching the maximum number of iterations the algorithm
is permitted to terminate early if certain requirements are met.
For this algorithm the early termination requirements are that
the solution found is acceptable, which is defined as having
an average preference of 2, with ‘NULL’ events are ignored in
this average. Once an acceptable solution has been found the
chromosome is decoded back into a list of events, maintaining
the output order. This is then mapped to a period object which
outlines what time slot each position refers to.

IV. EVALUATION

Three sets of testing are conducted in this section to
demonstrate and evaluate the proposed smart calendar system.
These tests were carried out using a laptop running a dual core
i7 processor and 32GB of RAM.

A. Test on Small Number of Events

A scenario was tested using the system which demonstrates
how each algorithm would be used. The scenario is as follows:

1) Schedule 3 events of different sizes (1hr, 2hr, 1hr)
over one day

2) Add an extra 1hr event which overlaps with the 1hr
event from test 1

3) Schedule 6 events over several weeks (Differing in
sizes)

The first test would be carried out by the branch and abound
algorithm as it is under the threshold. The second test would



be attempted to be carried out by the Hungarian algorithm
as it only contains one event (meaning size and spacing is
consistent). However, as it overlaps with an existing event
which is not locked so this is added to the list of event which
need to be processed. As this event is the same size it might
be eligible to be processed by the Hungarian algorithm if the
spacing between preferences is consistent, if not it would be
calculated using branch and bound. In the specific test carried
out, Hungarian algorithm was used. The third test is processed
by the Hungarian algorithm as it matches the requirements for
that algorithm to be used. Finally, the GA is used to process
the large set of events.

The times taken for these algorithms are shown in Table III.
The times taken for processing of all algorithms have been
shown so that a comparative analysis of the results can be
carried out to justify the need for all algorithms. Note that the
GA results will vary proportionately to the the time taken due
to the nature of the algorithm. All algorithms found the global
maximum.

BB Hungarian GA
Test 1 0.012 N/A 0.008
Test 2 0.012 0.001 0.682
Test 3 N/A N/A 23.164

Table III. PERFORMANCE TESTING RESULTS (TIMES ARE IN SECONDS)

Test 1 represents a general assignment of a days events
which is where the branch and bound algorithm is most useful.
Although the results show the the GA was able to calculate the
solution faster, it cannot guarantee that the solution it produces
will always be the global maximum, which is why it is im-
portant to use the branch and bound algorithm where possible.
Test 2 demonstrates how useful the Hungarian algorithm is
when its requirements are met. It was able to process the
addition of an event whose preferences overlapped with an
existing event in significantly less time than the GA. However,
the table also shows that it is not often that the algorithm
can be used as it has very strict requirements for it to be
able to function properly, but this is acceptable due to the
performance that it offers. This algorithm is specifically useful
for timetabling for consistent event sizes such as conferences
and timetabling. The final test demonstrates how the GA is
able to handle a very large search space. Although there are
not a large number of events, having a range of preferences
over a large period of time for multiple events creates a large
number of potential combinations.

B. Test on Medium Number of Events

Though the above tests demonstrate performance with
regards to time, the tests themselves do not represent some of
the more challenging problems the application can solve and
also do not evaluate the quality of the solution provided. Two
sets of tests were devised, as illustrated in Tables. IV and V,
to evaluate the algorithms performance for solving over and
under constrained problems as this is where this software has
the best application. These were solved by all three algorithms
and the processing time and quality of solution were recorded.

- 09:00 10:00 11:00 12:00 13:00
M 1 2 2 6 6
N 0 - - - -
O 1 1 2 8 8
P 4 3 1 4 5
Q 8 6 3 3 1

Table IV. OVER CONSTRAINED PREFERENCE MATRIX (EVENTS WITH
SAME LENGTHS)

- 09:00 10:00 11:00 12:00 13:00
R 1 1 1 2 3
S 2 1 1 2 2
T 3 1 1 1 1
U 1 2 2 2 2
V 5 3 3 3 1

Table V. UNDER CONSTRAINED PREFERENCE MATRIX (EVENT WITH
THE SAME SIZE)

BB Hungarian GA
Over Constrained

Time (Seconds) 0.567 0.001 0.018
Preference (Min 8) 8 8 11

Under Constrained
Time (Seconds) 0.583 0.001 0.009

Preference (Min 5) 5 5 10
Table VI. PERFORMANCE FOR UNDER AND OVER CONSTRAINED

PROBLEMS

Table VI shows the performance of all three algorithms
for the test described above. Once again this demonstrates
the potential of the Hungarian algorithm when dealing with
events of the same size. Alongside this, the branch and bound
algorithm is outperformed by the GA with respect to time.
However this test shows that the increase in processing time
is compensated for as the branch and bound was able to find
the global maximum whereas the GA was not.

C. Test on Large Number of Events with Same Length

In order to properly demonstrate the use of the Hungarian
algorithm, 600 events with random preferences were generated
and set for assignment over a period of four weeks. The times
listed in Table VII shows how long the Hungarian algorithm
and GA took to find the global maximum solution for this
scheduling problem. Branch and bound algorithm was not
applied to this problem as it will take unacceptable amount
of time to process.

BB Hungarian GA
Time (Seconds) N/A 21.178 1291

Table VII. STRESS TEST OF HUNGARIAN ALGORITHM AND GA

This stress test demonstrates the full potential of the
Hungarian algorithm when used in comparison to the GA. The
Hungarian algorithm is able to not only able to find a solution
within reasonable time, but also is able to find the best solution
possible. For this reason it is able to seriously outperform most
other algorithms when its conditions are met.

D. Discussion

Contrary to SELFPLANNER [3], this system does not give
the user multiple variations of good solutions for the user to



choose from. It instead relies upon the user to submit accurate
data describing their preferences of when an event should be
carried out. Also, where it uses hard and soft constraints to
represent different sub-problems, this planning system takes a
different approach to tackling the same issue. In the software
this paper presents, users can specify a preference value of 0
to signify that the event must happen at a certain time. This
allows all of the examples brought up by Refanidis et al. to
be solvable within this system.

V. CONCLUSION

This paper has presented a smart, personal calendar that
works as a complementary of a regular calendar by adding
extra functionality of a comprehensive planning system. In
particular, the system effectively employs three search algo-
rithms for different planning tasks in an effort to combine
the advantages of these search algorithms while avoiding their
drawbacks at the same time. This is done by assigning each
algorithm specific types of assignment problems, the allocation
of which is based mainly on the size of the search space.
The evaluation of the algorithms used shows how branch and
bound is used to maximise its ability to always find the global
maximum, how the Hungarian algorithm can process data
incredibly quickly and how the genetic algorithm is capable
of solving large search spaces.

The work presented herein is a summary of an under-
graduate final year project developed in limited amount of
time, and the work can be improved in a number of ways.
The current system is a single objective optimisation based
on event preference. Sometimes, planning may need to be
made based on other important factors besides preference,
such as event importance and potential gains led by the event.
Therefore, it would be worthwhile to allow the system to
optimise event planning based on multiple objectives. Also,
preferences are represented as natural numbers between 0 and
9 in the current work, which limits the user’s preference to 10
levels. This limitation can be addressed by introducing fuzzy
logic to allow rich representation and inference on various
personal preferences. In this case, flexible CSP [29] may help.
In addition, the work needs to be further evaluated by more
complex real world cases, as the current case study is mainly
for demonstration and validation.
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